35 research outputs found

    Cell circuits between B cell progenitors and IL-7+ mesenchymal progenitor cells control B cell development

    Get PDF
    B cell progenitors require paracrine signals such as interleukin-7 (IL-7) provided by bone marrow stromal cells for proliferation and survival. Yet, how B cells regulate access to these signals in vivo remains unclear. Here we show that proB and IL-

    Stromal cell protein kinase C-β inhibition enhances chemosensitivity in B cell malignancies and overcomes drug resistance.

    Get PDF
    Overcoming drug resistance remains a key challenge to cure patients with acute and chronic B cell malignancies. Here, we describe a stromal cell-autonomous signaling pathway, which contributes to drug resistance of malignant B cells. We show that protein kinase C (PKC)-β-dependent signals from bone marrow-derived stromal cells markedly decrease the efficacy of cytotoxic therapies. Conversely, small-molecule PKC-β inhibitors antagonize prosurvival signals from stromal cells and sensitize tumor cells to targeted and nontargeted chemotherapy, resulting in enhanced cytotoxicity and prolonged survival in vivo. Mechanistically, stromal PKC-β controls the expression of adhesion and matrix proteins, required for activation of phosphoinositide 3-kinases (PI3Ks) and the extracellular signal-regulated kinase (ERK)-mediated stabilization of B cell lymphoma-extra large (BCL-XL) in tumor cells. Central to the stroma-mediated drug resistance is the PKC-β-dependent activation of transcription factor EB, regulating lysosome biogenesis and plasma membrane integrity. Stroma-directed therapies, enabled by direct inhibition of PKC-β, enhance the effectiveness of many antileukemic therapies.This work was funded by Cancer Research UK (CRUK; C49940/A17480). I.R. is a senior CRUK fellow. M.S.S is supported by the DFG through SCHM2440/7-1 and CRC1243 (A12). L.G. & O.W. received funding from CWCUK (grant 14-169) and GOSHCC (grant V2617). A.E. receives research grants from the Austrian Science Fund (FWF; Transcan I2795-B28 to A.E. (FIRE-CLL), DACH grants I3282-B26 and I1299-B21 (FOR2036) and a grant from the Paracelsus Medical University (PMU Grant E-13/18/091-EGF). S.S. receives funding from the DFG (SFB1074 , project B1), relevant to this work

    Regulation of gene expression dynamics during developmental transitions by the Ikaros transcription factor

    No full text
    The DNA-binding protein Ikaros is a potent tumor suppressor and hematopoietic regulator. However, the mechanisms by which Ikaros functions remain poorly understood, due in part to its atypical DNA-binding properties and partnership with the poorly understood Mi-2/NuRD complex. In this study, we analyzed five sequential stages of thymocyte development in a mouse strain containing a targeted deletion of Ikaros zinc finger 4, which exhibits a select subset of abnormalities observed in Ikaros-null mice. By examining thymopoiesis in vivo and in vitro, diverse abnormalities were observed at each developmental stage. RNA sequencing revealed that each stage is characterized by the misregulation of a limited number of genes, with a strong preference for stage-specific rather than lineage-specific genes. Strikingly, individual genes rarely exhibited Ikaros dependence at all stages. Instead, a consistent feature of the aberrantly expressed genes was a reduced magnitude of expression level change during developmental transitions. These results, combined with analyses of the interplay between Ikaros loss of function and Notch signaling, suggest that Ikaros may not be a conventional activator or repressor of defined sets of genes. Instead, a primary function may be to sharpen the dynamic range of gene expression changes during developmental transitions via atypical molecular mechanisms that remain undefined
    corecore